If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-5t^2-4t+120=0
a = -5; b = -4; c = +120;
Δ = b2-4ac
Δ = -42-4·(-5)·120
Δ = 2416
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2416}=\sqrt{16*151}=\sqrt{16}*\sqrt{151}=4\sqrt{151}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4\sqrt{151}}{2*-5}=\frac{4-4\sqrt{151}}{-10} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4\sqrt{151}}{2*-5}=\frac{4+4\sqrt{151}}{-10} $
| 2x-2=-3x-4 | | (3+2y)8-10=(3+2y)⋅8−10 | | 42x-160=126 | | 9(x-8)+6=8 | | 5-20x=65 | | u+14/10=9 | | 7k=8k-38 | | 4r+7+6r=10 | | 2x-8+3x+2=4x=10=3x-6 | | -2=-2x-6 | | -16t^2+20+50=0 | | u-(-14)/10=9 | | 13-b=-49 | | 14/21=6/3x-12 | | -2(4x+3)-x-7)=55 | | 13-b=-39 | | 3(q+2)-4=14 | | x+0.25x-12=-3 | | x+22=7x-8 | | 2-k=13 | | -4(r+18)+20=20 | | 6x-3=10+6 | | -3y+15-y=31 | | -5m-20=27 | | 0.75(-12x-16)+4x=0.5(8x+10)+1 | | -9(u-11)-15=-2 | | 2x+3+35=180 | | 5*n+2=10 | | -4(h-12)=-16 | | 7(y-5)+3y=10y+1 | | w/2+16=40 | | x7(x−9)=49 |